

13.02.2019 **3. Sitzung des projektbegleitenden Ausschusses zum IGF Vorhaben 18661 N**

"Entwicklung eines kompakten Adsorbers mit integrierter Durchbruchswarnung zur Abscheidung von Quecksilber aus kleinen diskontinuierlich anfallenden Abluftströmen"

Isabelle Klöfer, Margot Bittig, Ahmed Bankodad, Jonas Ambrosy, Dieter Bathen

Institut für Energie- und Umwelttechnik e.V. (IUTA), Duisburg

Lehrstuhl für Thermische Verfahrenstechnik Universität Duisburg-Essen, Duisburg

Einleitung

Abgase aus diskontinuierlichen Prozessen

Nicht vorhersehbare Hg-Emissionen

Starke Schwankungen in der Hg-Emissionshöhe

- z.B. Krematorien
 - Metallrecycling Recycling NE-Metalle Recycling Leuchtstoffröhren Recycling Batterien Pyrolyse Klärschlammverbrennungsanlagen

Zielsetzung des Projektes

Anwendungstechnische Zielstellung

Hg-Spitzen: Praxisbeispiel

Agenda

1. Einleitung

2. Arbeiten am IUTA

- Ausblick und Fazit der letzten PA-Sitzung
- Neuer Versuchsaufbau, Erzeugung Hg(0)
- AP 6 Wissenschaftliche Untersuchungen am Labormuster
- Von der Idee zum Sensor: elektrotechnische Aspekte
- Ausblick
- 3. Arbeiten am Lehrstuhl der Thermischen Verfahrenstechnik

Ausblick und Fazit zweite PA-Sitzung

Abgaszusammen- setzung Hg Spezies	Mögliche Nachweiswege	Unsere Lösungsvorschläge
Hg(0)	1. Indikator für Hg(0) und Reduktion von Hg(II)	 ✓ Reduktion von Hg(II) bekannt • Indikator f ür Hg(0)
Hg(II)	2. Indikator für Hg(II) und Oxidation von Hg(0)	 ✓ Indikator Hg(II)_{aq} • Gasphasenüberführung • Oxidation von Hg(0)
	3. Indikator für Hg(0) und Hg(II)	Amalgamierung Reaktion mit Hg(0) Reaktion mit Hg(II) Messsignal Amalgampartner

Versuchsaufbau Messung Hg

Farbindikator für Hg(0)

Oxidation von Hg(0)

Sensor mittels Amalgamierung

Farbindikation von Hg(0)

- 5 g lod auf 45 g EtOH
- ➢Nicht stabil

P25 (TiO₂) mit lod

- 5 g KI in H₂O_{Bidest.}
- ➢Nicht stabil

P25 (TiO₂) mit KI

normierter Konzentrationsverlauf

Versuchsbeschreibung: 05.03.2018, MnO_2 DeNoxKat, $Hg(0) = 100 \mu g/m^3 n.tr.$, trocken, 170 °C, V=7146 ln.tr./min; Hg(0)-Erzeugung mit NaBH₄

Duisburg, 13.02.2019

Niedertemperaturkatalysator für DeNOx

normierter Konzentrationsverlauf

Versuchsbeschreibung:

19.03.2018, CuO_2DeNO_xKat , $Hg(0) = 100 \ \mu g/m^3 n.tr.$, 0 Vol.% H_2O , 170 °C, D=30 mm, H=10 mm, V=2 ln.tr./min, 4,6 m/min

Hg-Nachweis mittels Amalgamierung

Mögliche Metalle:

- Kupfer
- Gold

iuta

Kupfer als Partner für die Amalgamierung

normierter Konzentrationsverlauf

Versuchsbeschreibung:

19.03.2018, CuO₂DeNO_xKat, Hg(0) = 100 μ g/m³n.tr., 0 Vol.% H₂O, 170 °C, D=30 mm, H=10 mm, V=2 In.tr./min, 4,6 m/min

Kupfer als Partner für die Amalgamierung

Cu 830 Schichtgewicht [mg/cm ³]	R-Differenz nach 15 min Beschickung mit SO ₂ [Ω]	R-Differenz nach 2 h Beschickung mit SO ₂ [Ω]
1,54	-0,0002	-0,0005
1,49	-0,1172	-0,1330
0,6	0,0411	0,0684

18182N IGF-Forschungsvorhaben zur Durchbruchswarnung für AMC Filter

Duisburg, 13.02.2019

Anhaltspunkte:

- 40-60 nm Schichtdicke
- Desorption 150-200 °C
- Wheatstonesche Brücke
- c(Hg0)=50-200 µg/Nm³

Unser Vorversuch:

- 100 mm Absolutfilter mit Gold bedampft ca. 30 nm
- Beaufschlagt mit Hg(0)-Probengas

Schambach, K. *Entwurf, Herstellung und Charakterisierung eines mikromechanischen Quecksilbersensors, Dissertation.* Dortmund: Fakultät für Elektrotechnik und Informatik, Universität Dortmund, 2003

normierter Konzentrationsverlauf

25.01.2019, Goldfilter, Hg(0) = 100 μ g/m³n.tr., gesättigt, Sorbens Temp. 40°C, D=100mm, V=4995 In.tr./min, 0,8 m/min

Konzentrationsverlauf

28.01.2019, Goldfilter Desorption, trocken, Sorbens Temp. 15-120°C, V=4990 In.tr./min, D=100 mm, 0,7-0,9 m/min

Übersicht Goldfalle

Abscheidegrad

25.01.2019 und 28.01.2019 , Goldfilter, Hg(0) = 100 $\mu g/m^3 n.tr.,$

- 1. Adsorbtion gesättigt, Sorbens Temp. 40°C,
- 1. Desorption bis 120°C

- 2. Adsorption Sorbens Temp. 120°C,
- 3. Adsorption, Sorbens Temp. 40°C,
- D=100mm, V=5000 In.tr./min, 0,8 m/min

Von der Idee zum Sensor: elektrotechnische Aspekte

Inhalt elektrotechnische Aspekte

- 1. Goldfilm als Quecksilber-Indikator
- 2. Stand der Technik
- 3. Problemstellung
- 4. Methode
- 5. Ergebnisse

Amalgam-Verfahren "optisch":

- Einsatz eines mit Nanopartikeln beschichteten Substrats
- nutzt die Verschiebung der Absorptionsmaxima nach Exposition mit Hg
- aufwendig und teuer in der Herstellung

→ Einsatz eines Spektrometers ist erforderlich

Amalgam-Verfahren "Resestiv":

- physikalisch-chemisches Verfahren, häufig wird Gold in Verbindung mit Quecksilber verwendet
- 1972 hat McNerney das Amalgam-Verfahren beschrieben
- das Amalgam-Verfahren nutzt die Widerstandsänderung in der Goldschicht

Amalgam-Verfahren: Literatur

Amlagam-Verfahren "Ansätze in der Literatur":

- [1] Schambach et al. und
 [2] Mazzolai et al.: mikrosystemtechnisch hergestellte Widerstände als Quecksilbersensor
 → aufwendig und anfällig
- [2] Schichtdicke von ca. 200 nm
 → unempfindlich gegenüber kleinen Konzentrationen
- [3] Keebaugh et al.: Goldnanodrähte
- [4] Gehl et al.: hochporöse Struktur in Form von Aerogelen aus kolloidalen Goldnanopartikeln
 - → zeigte widersprüchliche Messergebnisse nach der Quecksilberexposition
- [5] McNicholas et al. : mit Goldpartikeln dekorierte Kohlenstoffnanoröhren

Materialauswahl

- Amlagam-Verfahren unter Einsatz eines Goldfilms als Sensorfläche
 Kostengünstig
- \succ Glas als Substrat \rightarrow keine Isolierschicht erforderlich
- ➢ Silizium als Substart → wärmeleitfähig bzw. beheizbar, Isolierschicht erforderlich
- Einsatz kommerziell erhältliche vergoldete Substrate
 regelmäßige Schichtdicke

Vergoldete Silizium Wafer

Fa. Micro to Nano

Vergoldeter Objektträger Fa. Micro to Nano

Grundlagen

E. H. Sondheimer. "The mean free path of electron"

desto hoher die Widerstandsänderung

Strukturierung: Beschaltung

- ➢ Einsatz der wheatstoneschen Messbrücke
 → Minimierung des Temperaturdrift-Einflusses auf den Messwert
 → ΔR ist proportional zur Spannungsdifferenz der Messbrücke
- Messung der Spannungsdifferenz und der angelegten Spannung
- Messung des Spannungsabfalls an den einzelnen Goldwiderständen und an den Referenzwiderständen
- Erkennung und Berücksichtigung von Messfehlern z.B. aufgrund des Temperaturdrift-Einflusses
- Messung der Temperatur der einzelnen Goldwiderstände
 Fehlerrechnung
- Erstellung einer Firmware zur Sensor-Kalibrierung und Bestimmung der Hg-Konzentration

Kontaktierung und Charakterisierung

Auf einer Platine fixierter Quecksilber-Sensor

- ➢ Kontaktierung durch klebende Leitlötpasten → mangelnde mechanische Festigkeit und kein niederohmiger Kontaktwiderstand
- ➢ Kontaktierung durch schnellen Lötvorgang → niederohmige Verbindung und ausreichende mechanische Festigkeit

Duisburg, 13.02.2019

Zusammenfassung der Ergebnisse:

- Auswahl des Goldfilm-Substrats
- Strukturierung der Goldwiderstände mittels Lasergravur
- Erstellung und Kontaktierung der ersten Sensor-Prototyp
- Untersuchung der Beständigkeit gegen Temperatur
 → keine Beschädigung nach Aufheizung auf 130 °C für 4 Stunde

Nächste Arbeitsschritte:

- Auswahl der elektronische Komponenten
- Beschaltung in Wheatstonesche Messbrücke
- Auslegung der Signalverstärkung und Versorgungs-Spannung
- Untersuchung der Langzeit-Stabilität ohne Exposition
- Untersuchung des Temperaturdrift-Einflusses
- Ermittlung der maximalen Widerstandsänderung bei Exposition
- Ermittelung der Widerstandsänderungsrate in Abhängigkeit der Hg-Konzentration und der Expositionsdauer

Fazit und Ausblick

Goldfalle

- Funktioniert
- Parameter eingrenzen
- Verwendete Goldfallen der Messgerätehersteller näher betrachten
- Vorversuche zur Widerstandsmessung von Amalgamen

Weitere Möglichkeiten:

- Halbleiter
- Mögliche weitere Legierungen

MnO₂ als Halbleiter

- Versuche mit Hg(II) stehen noch aus
- Feuchtigkeit und niedrige Temperaturen: Abscheidegrad von 30%
- Reaktion ist nicht reversibel

- [1]: K. Schambach, K. Eden, K. Schumacher and G. Wiegleb: "micromachined Mercury Sensor", in Solid-State Device Research Conference, 2002. Proceeding of the 32nd European: IEEE, 2002, pp. 443-446.
- [2]: B. Mazzolai et al.: "microfabricated physical sensor for atmospheric mercury monitoring", Sensor and Actuators A: Physical, vol. 113, no. 3, pp. 282-287, 2004.
- [3]: S. Keebaugh, A. K. Kalkan, W. J. Nam, and S. J. Fonash: "Gold Nanowires for the Detection of Elemental and Ionic Mercury", Electrochem. Solid-Stae Lett:, vol. 9, no. 9, H88, 2006.
- [4]: A. Gehl, A. Schlosser, M. Allers, A. Freytag, N. Bigall, S. Zimmermann: " Gold-Aerogele zur Detektion von elementarem Quecksilber in der Gasphase"
- [5]: T. P. McNicholas et al.: "Sensitive Detection of Mercury Vapor by Gold Nanoparticle Decorated Carbon Nanotube Sensors"