ACHEMA 2003, Frankfurt am Main, Germany - 19 - 24 May 2003

Fraunhofer Institut Umwelt-, Sicherheits-, Energietechnik UMSICHT

Application of advanced oxidation process (AOP) for degradation of hazardous pharmaceuticals in hospital waste water

Dipl.-Chem. Jochen Türk Department of Environmental Medicine Institute of Energy and Environmental Technology (IUTA)

OVERVIEW

Introduction

Present results

- Development and Validation of compound analysis
- Advanced oxidation process (AOP)
 - UV source (emitter)
 - Oxidation agents
 - Different matrices
 - Influence of temperature
 - Toxicity and mutagenicity
- Further experiments
- Outlook (technical realisation) and discussion

Introduction

- Pharmaceuticals in the environment
 - persistence,
 - Toxic and mutagenic effects,
 - antibiotic resistance promoter,
 - endocrine effects
- hospital waste water = important input source
- Development of a procedure for reduction of the drug contaminations using AOP

Application of advanced oxidation process (AOP) for degradation of hazardous pharmaceuticals in hospital waste water

Possibilities for reduction of drug input

iuta

Application of advanced oxidation process (AOP) for degradation of hazardous pharmaceuticals in hospital waste water

Work Program

<u>1st Stage: April 2002 – March 2004</u>

- Development of procedure (laboratory scale)
- Optimization (effectiveness, costs)
- Modelling of pilot plant

2nd Stage: April 2004 – March 2006

- Construction of pilot plant
- Optimization (effectiveness, <u>costs</u>)
- Test phase in a hospital

Application of advanced oxidation process (AOP) for degradation of hazardous pharmaceuticals in hospital waste water

Conditions for treatment of toilet effluent

- Toilets: 1-10 (oncology ward)
- Volume: 10-50 L/h; 100-500 L/d
- Concentr: up to 0.1(anticancer) 1mg/L (antibiotic)
- **TOC:** 100 400mg/L (liquid phase)
- **COD:** 300 1000mg/L (liquid phase)

Application of advanced oxidation process (AOP) for degradation of hazardous pharmaceuticals in hospital waste water

Selected marker substances

Anticancer drugs

- Chlorambucil
- Cyclophosphamide
- Cytarabine
- Etoposide
- 5-Fluorouracil
- Ifosfamide
- Methotrexate

Antibiotic drugs

- Cefuroxime
- Chloramphenicol
- Ciprofloxacin
- Ofloxacin
- Sulfamethoxazole
- Trimethoprim

\rightarrow 100 µg/L each

\rightarrow 1000 µg/L each

Application of advanced oxidation process (AOP) for degradation of hazardous pharmaceuticals in hospital waste water

Application of advanced oxidation process (AOP) for degradation of hazardous pharmaceuticals in hospital waste water

Advanced Oxidation Process (AOP)

 ■ Formation of hydroxyl-radicals by UV-light and oxidation agents
 > H₂O₂, H₂O₂/O₃ and O₃, (TiO₂)

$$H_2O_2 \xrightarrow{h \cdot v (254 \text{ nm})} 2 \cdot OH$$

R - H + \cdot OH \rightarrow R \cdot + H_2O

Oxidans	$E_{H}^{0}[V]$
F ₂	2,87
·OH	2,81
O ₃	2,07
H_2O_2	1,76
MnO_4	1,70
Cl_2	1,36
O ₂	1,23

Application of advanced oxidation process (AOP) for degradation of hazardous pharmaceuticals in hospital waste water

Laboratory scale treatment plant

Hg-low pressure + Ozone

Hg-low pressure $+ H_2O_2$ (termostated)

Application of advanced oxidation process (AOP) for degradation of hazardous pharmaceuticals in hospital waste water

Quantitation of pharmaceuticals

LC-MS/MS

- Excellent limits of detection (0.1 3 μg/L)
- Reduction of matrix effects by matrix calibration
- Identification of metabolites

LC-MS/MS – Chromatogram

iuta

Application of advanced oxidation process (AOP) for degradation of hazardous pharmaceuticals in hospital waste water

Optimized parameters

- *Matrix:* water > synth. waste water ≈ toilet effluents
- **Solide/liquid separation:** Sedimentation > Filtration
- *UV-Source*: **Hg-low pressure** > Hg-medium pressure
- Oxidating agent: $H_2O_2 > H_2O_2 / O_3 > O_3 (> TiO_2)$
- *Concentration*: H₂O₂: 0.5 7.5 g/L; O₃: 0.3 0.6 g/m³
- **Duration of treatment**: 30 120min
- *Temperature*: 20 40°C

Results: Antibiotics

spiked toilet effluent, 24 h sediment.; UV-LP; 2.5 g/L H₂O₂; 20°C

iuto

Application of advanced oxidation process (AOP) for degradation of hazardous pharmaceuticals in hospital waste water

Results: Cytostatics

spiked toilet effluent; 24 h sediment.; UV-LP; 2.5 g/L H₂O₂; 20°C

iuta

Application of advanced oxidation process (AOP) for degradation of hazardous pharmaceuticals in hospital waste water

Comparison of oxidants

Application of advanced oxidation process (AOP) for degradation of hazardous pharmaceuticals in hospital waste water

Influence of temperature

iuta

Application of advanced oxidation process (AOP) for degradation of hazardous pharmaceuticals in hospital waste water

Reduction of toxicity: Luminescent Bacteria

Application of advanced oxidation process (AOP) for degradation of hazardous pharmaceuticals in hospital waste water

Reduction of mutagenicity: UMU test

iuta

Application of advanced oxidation process (AOP) for degradation of hazardous pharmaceuticals in hospital waste water

Summary

- Relative simple and sufficient procedure
- **Duration of treatment: 1 hour**
- \rightarrow Degradation of substances > 95%
- $\Rightarrow \text{ Reduction of toxicity} > 90\%$
- $\Rightarrow \text{ Reduction of mutagenicity } > 90\%$

iuta

Application of advanced oxidation process (AOP) for degradation of hazardous pharmaceuticals in hospital waste water

Remaining work

- Investigation on metabolites
- Quantification of drugs absorbed on solid material; treatment of sludge
- Further substances (drugs, x-ray contrast media, disinfectants, ...)
- Experiments with real effluents
- Scale up

Application of advanced oxidation process (AOP) for degradation of hazardous pharmaceuticals in hospital waste water

Acknowledgments

- J. Plöger, M. Reinders, Dr. T.K. Kiffmeyer; IUTA
- B. Becker, Dr. S. Kabasci; Fraunhofer UMSICHT
- Dr. F. Pfeiffer; DMT
- German Federation of Industrial
 Cooperative Research Associations

 Financial support for the HPLC-MS/MS system by the Ministry of Education, Science and Research (MWF) of NRW, Germany

Application of advanced oxidation process (AOP) for degradation of hazardous pharmaceuticals in hospital waste water